Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 627(8004): 636-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418875

RESUMO

A hallmark of cancer is the avoidance of immune destruction. This process has been primarily investigated in locally advanced or metastatic cancer1-3; however, much less is known about how pre-malignant or early invasive tumours evade immune detection. Here, to understand this process in early colorectal cancers (CRCs), we investigated how naive colon cancer organoids that were engineered in vitro to harbour Apc-null, KrasG12D and Trp53-null (AKP) mutations adapted to the in vivo native colonic environment. Comprehensive transcriptomic and chromatin analyses revealed that the endoderm-specifying transcription factor SOX17 became strongly upregulated in vivo. Notably, whereas SOX17 loss did not affect AKP organoid propagation in vitro, its loss markedly reduced the ability of AKP tumours to persist in vivo. The small fraction of SOX17-null tumours that grew displayed notable interferon-γ (IFNγ)-producing effector-like CD8+ T cell infiltrates in contrast to the immune-suppressive microenvironment in wild-type counterparts. Mechanistically, in both endogenous Apc-null pre-malignant adenomas and transplanted organoid-derived AKP CRCs, SOX17 suppresses the ability of tumour cells to sense and respond to IFNγ, preventing anti-tumour T cell responses. Finally, SOX17 engages a fetal intestinal programme that drives differentiation away from LGR5+ tumour cells to produce immune-evasive LGR5- tumour cells with lower expression of major histocompatibility complex class I (MHC-I). We propose that SOX17 is a transcription factor that is engaged during the early steps of colon cancer to orchestrate an immune-evasive programme that permits CRC initiation and progression.


Assuntos
Adenoma , Neoplasias Colorretais , Evasão da Resposta Imune , Fatores de Transcrição SOXF , Animais , Humanos , Camundongos , Adenoma/imunologia , Adenoma/patologia , Linfócitos T CD8-Positivos/imunologia , Cromatina/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Interferon gama/imunologia , Organoides/imunologia , Organoides/patologia , Fatores de Transcrição SOXF/metabolismo , Microambiente Tumoral/imunologia , Mutação , Endoderma/metabolismo , Progressão da Doença
3.
Cancer Res ; 83(19): 3284-3304, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37450351

RESUMO

Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated ß2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of ß2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias da Mama/patologia , Apresentação de Antígeno , Proteínas Reguladoras de Apoptose , Apoptose , Linhagem Celular Tumoral , Proteínas Mitocondriais/metabolismo , Microambiente Tumoral
4.
Sci Signal ; 16(787): eadf6696, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253090

RESUMO

Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.


Assuntos
Células Estreladas do Fígado , Fígado , Neurotrofina 3 , Animais , Camundongos , Proliferação de Células , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Neurotrofina 3/metabolismo
5.
STAR Protoc ; 3(4): 101795, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36325581

RESUMO

Single-cell techniques have revolutionized biology; however, the required sample processing inherently implies the loss of spatial localization. Here, using an approach called photoconversion of areas to dissect micro-environments (PADME), we detail steps to isolate live single cells from a primary breast tumor while retaining spatial information by combining cell photolabeling and FACS (fluorescence-activated cell sorting). These live cells can be subsequently used for myriad techniques, from flow cytometry to single-cell RNA sequencing or other single cell "omics" approach. For complete details on the use and execution of this protocol, please refer to Baldominos et al. (2022).


Assuntos
Citometria de Fluxo , Citometria de Fluxo/métodos
6.
J Immunother Cancer ; 10(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36252998

RESUMO

BACKGROUND: Preclinical and clinical data support potential synergy between anti-HER2 therapy plus immune checkpoint blockade. The safety and tolerability of trastuzumab emtansine (T-DM1) combined with pembrolizumab is unknown. METHODS: This was a single-arm phase Ib trial (registration date January 26, 2017) of T-DM1 plus pembrolizumab in metastatic, human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Eligible patients had HER2-positive, metastatic breast cancer previously treated with taxane, trastuzumab, and pertuzumab, and were T-DM1-naïve. A dose de-escalation design was used, with a dose-finding cohort followed by an expansion cohort at the recommended phase 2 dose (RP2D), with mandatory baseline biopsies. The primary endpoint was safety and tolerability. Secondary endpoints included objective response rate (ORR) and progression-free survival (PFS). Immune biomarkers were assessed using histology, protein/RNA expression, and whole exome sequencing. Associations between immune biomarkers and treatment response, and biomarker changes before and during treatment, were explored. RESULTS: 20 patients received protocol therapy. There were no dose-limiting toxicities. The RP2D was 3.6 mg/kg T-DM1 every 21 days plus 200 mg pembrolizumab every 21 days. 85% of patients experienced treatment-related adverse events (AEs) ≥grade 2, 20% of patients experienced grade 3 AEs, and no patients experienced grade >4 AEs. Four patients (20%) experienced pneumonitis (three grade 2 events; one grade 3 event). ORR was 20% (95% CI 5.7% to 43.7%), and median PFS was 9.6 months (95% CI 2.8 to 16.0 months). Programmed cell death ligand-1 and tumor infiltrating lymphocytes did not correlate with response in this small cohort. CONCLUSIONS: T-DM1 plus pembrolizumab was a safe and tolerable regimen. Ongoing trials will define if there is a role for checkpoint inhibition in the management of HER2-positive metastatic breast cancer. TRIAL REGISTRATION NUMBER: NCT03032107.


Assuntos
Neoplasias da Mama , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/patologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Ligantes , RNA/uso terapêutico , Taxoides , Trastuzumab/efeitos adversos
7.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447074

RESUMO

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Recidiva Local de Neoplasia , Linfócitos T/patologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
8.
Nat Commun ; 12(1): 5563, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548479

RESUMO

Immune checkpoint inhibitors (ICIs) have minimal therapeutic effect in hormone receptor-positive (HR+ ) breast cancer. We present final overall survival (OS) results (n = 88) from a randomized phase 2 trial of eribulin ± pembrolizumab for patients with metastatic HR+ breast cancer, computationally dissect genomic and/or transcriptomic data from pre-treatment tumors (n = 52) for molecular associations with efficacy, and identify cytokine changes differentiating response and ICI-related toxicity (n = 58). Despite no improvement in OS with combination therapy (hazard ratio 0.95, 95% CI 0.59-1.55, p = 0.84), immune infiltration and antigen presentation distinguished responding tumors, while tumor heterogeneity and estrogen signaling independently associated with resistance. Moreover, patients with ICI-related toxicity had lower levels of immunoregulatory cytokines. Broadly, we establish a framework for ICI response in HR+ breast cancer that warrants diagnostic and therapeutic validation. ClinicalTrials.gov Registration: NCT03051659.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Furanos/uso terapêutico , Cetonas/uso terapêutico , Adulto , Idoso , Apresentação de Antígeno/genética , Antígeno B7-H1/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Citocinas/sangue , Citocinas/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Estrogênios/metabolismo , Feminino , Perfilação da Expressão Gênica , Heterogeneidade Genética , Genoma Humano/genética , Genômica , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais/genética , Taxa de Sobrevida , Resultado do Tratamento
9.
Front Immunol ; 12: 674192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135901

RESUMO

Immune checkpoint blockade (ICB) has revolutionized the treatment of cancer patients. The main focus of ICB has been on reinvigorating the adaptive immune response, namely, activating cytotoxic T cells. ICB has demonstrated only modest benefit against advanced breast cancer, as breast tumors typically establish an immune suppressive tumor microenvironment (TME). Triple-negative breast cancer (TNBC) is associated with infiltration of tumor infiltrating lymphocytes (TILs) and patients with TNBC have shown clinical responses to ICB. In contrast, hormone receptor positive (HR+) breast cancer is characterized by low TIL infiltration and minimal response to ICB. Here we review how HR+ breast tumors establish a TME devoid of TILs, have low HLA class I expression, and recruit immune cells, other than T cells, which impact response to therapy. In addition, we review emerging technologies that have been employed to characterize components of the TME to reveal that tumor associated macrophages (TAMs) are abundant in HR+ cancer, are highly immune-suppressive, associated with tumor progression, chemotherapy and ICB-resistance, metastasis and poor survival. We reveal novel therapeutic targets and possible combinations with ICB to enhance anti-tumor immune responses, which may have great potential in HR+ breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Receptor ErbB-2/imunologia , Receptores de Estrogênio/imunologia , Receptores de Progesterona/imunologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Microambiente Tumoral/imunologia
10.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011631

RESUMO

Loss of major histocompatibility complex (MHC) class I and interferon-γ (IFN-γ) sensing are major causes of primary and acquired resistance to checkpoint blockade immunotherapy. Thus, additional treatment options are needed for tumors that lose expression of MHC class I. The cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) regulate classical and alternative nuclear factor κB (NF-κB) signaling. Induction of noncanonical NF-κB signaling with cIAP1/2 antagonists mimics costimulatory signaling, augmenting antitumor immunity. We show that induction of noncanonical NF-κB signaling induces T cell-dependent immune responses, even in ß2-microglobulin (ß2M)-deficient tumors, demonstrating that direct CD8 T cell recognition of tumor cell-expressed MHC class I is not required. Instead, T cell-produced lymphotoxin reprograms both mouse and human macrophages to be tumoricidal. In wild-type mice, but not mice incapable of antigen-specific T cell responses, cIAP1/2 antagonism reduces tumor burden by increasing phagocytosis of live tumor cells. Efficacy is augmented by combination with CD47 blockade. Thus, activation of noncanonical NF-κB stimulates a T cell-macrophage axis that curtails growth of tumors that are resistant to checkpoint blockade because of loss of MHC class I or IFN-γ sensing. These findings provide a potential mechanism for controlling checkpoint blockade refractory tumors.


Assuntos
Reprogramação Celular , Antígenos de Histocompatibilidade Classe I , Imunoterapia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias/terapia , Fagócitos , Linfócitos T/imunologia , Animais , Humanos , Interferon gama , Macrófagos , Camundongos , NF-kappa B , Neoplasias/imunologia , Transdução de Sinais
11.
Cell Stem Cell ; 28(4): 600-602, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798421

RESUMO

COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.


Assuntos
Pesquisadores , Células-Tronco , COVID-19 , Humanos
12.
Cancer Cell ; 39(1): 54-67.e9, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33385331

RESUMO

Cancer immunotherapy shows limited efficacy against many solid tumors that originate from epithelial tissues, including triple-negative breast cancer (TNBC). We identify the SOX4 transcription factor as an important resistance mechanism to T cell-mediated cytotoxicity for TNBC cells. Mechanistic studies demonstrate that inactivation of SOX4 in tumor cells increases the expression of genes in a number of innate and adaptive immune pathways important for protective tumor immunity. Expression of SOX4 is regulated by the integrin αvß6 receptor on the surface of tumor cells, which activates TGFß from a latent precursor. An integrin αvß6/8-blocking monoclonal antibody (mAb) inhibits SOX4 expression and sensitizes TNBC cells to cytotoxic T cells. This integrin mAb induces a substantial survival benefit in highly metastatic murine TNBC models poorly responsive to PD-1 blockade. Targeting of the integrin αvß6-TGFß-SOX4 pathway therefore provides therapeutic opportunities for TNBC and other highly aggressive human cancers of epithelial origin.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos de Neoplasias/genética , Antineoplásicos Imunológicos/uso terapêutico , Integrinas/genética , Fatores de Transcrição SOXC/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Evasão Tumoral , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Camundongos , Transplante de Neoplasias , Fatores de Transcrição SOXC/metabolismo , Análise de Sequência de RNA , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/metabolismo , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Exp Dermatol ; 30(4): 522-528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103270

RESUMO

The skin forms a barrier that prevents dehydration and keeps us safe from pathogens. To ensure proper function, the skin possesses a myriad of stem cell populations that are essential for maintenance and repair upon damage. In order to protect, the skin is also an active immunological site, with abundant resident immune cells and strong recruitment of even more immune cells during wounding or infection. Such active and strong immunity makes the skin susceptible to a diverse spectrum of autoimmune diseases, such as vitiligo and alopecia areata. Conversely, despite constant immune surveillance, the skin is also a tissue where frequent malignancies occur, which suggests that immune evasion must also take place. Skin stem cells play a crucial role during both regeneration and tumorigenesis. How immune cells, and in particular T cells, interact with skin stem cells and the implications this crosstalk has in skin disease (both autoimmunity and cancer) is not fully understood. Uncovering the mechanisms governing immune-stem cells interactions in the skin is critical for the development of new therapeutic strategies to safeguard susceptible cells during autoimmunity and, conversely, to improve cancer immunotherapy. Here, I will discuss how distinct skin stem cell populations are attacked by, or conversely, cloaked from immune cells, and the implications their differences have in autoimmunity and cancer.


Assuntos
Autoimunidade/imunologia , Privilégio Imunológico/imunologia , Neoplasias Cutâneas/imunologia , Pele/imunologia , Células-Tronco/imunologia , Linfócitos T/imunologia , Humanos
14.
Cancers (Basel) ; 12(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207601

RESUMO

Cancer immunotherapy has shifted the paradigm in cancer therapy by revitalizing immune responses against tumor cells. Specifically, in primary tumors cancer cells evolve in an immunosuppressive microenvironment, which protects them from immune attack. However, during tumor progression, some cancer cells leave the protective tumor mass, disseminating and seeding secondary organs. These initial disseminated tumor cells (DTCs) should potentially be susceptible to recognition by the immune system in the new host tissues. Although Natural Killer or T cells eliminate some of these DTCs, a fraction escape anti-tumor immunity and survive, thus giving rise to metastatic colonization. How DTCs interact with immune cells and the underpinnings that regulate imperfect immune responses during tumor dissemination remain poorly understood. Uncovering such mechanisms of immune evasion may contribute to the development of immunotherapy specifically targeting DTCs. Here we review current knowledge about systemic and site-specific immune-cancer crosstalk in the early steps of metastasis formation. Moreover, we highlight how conventional cancer therapies can shape the pre-metastatic niche enabling immune escape of newly arrived DTCs.

15.
Methods Mol Biol ; 2171: 25-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705633

RESUMO

Functional studies of specific stem cell populations often require depletion of tissue-specific stem cells in an in vivo model to allow for the interrogation of their contribution to the maintenance and/or regeneration of their home tissue. Depletion methods need an exquisite specificity to uniquely eliminate the target cell type. To achieve such specificity, a commonly used approach has been murine models with expression of the Diphtheria Toxin Receptor (DTR) in the cell of interest. The major caveat of using these DTR-expressing transgenic mice is the need to generate new DTR models for every new cell population of interest. While DTR-expressing models are limited, the number of available GFP-expressing mice is large. To take advantage of this plethora of cell type-specific GFP-reporter mice, we sought to exploit the body's own killer cells as a depletion tool. Thus, we generated a mouse model whose cytotoxic T cells recognize and kill GFP-expressing cells, called the Jedi (Agudo et al., Nat Biotechnol 33:1287-1292, 2015). Jedi T cells now enable the depletion of virtually almost any cell type by using a suitable GFP-expressing transgenic mouse (Agudo et al., Nat Biotechnol 33:1287-1292, 2015; Chen et al., J Clin Invest 128(8):3413-3424, 2018). Here, we explain in detail how to achieve depletion of Lgr5+ stem cells in the intestine with a single injection of Jedi T cells (Agudo et al., Immunity 48:271-285.e5, 2018) with a methodology that can be extrapolated to any other GFP-expressing cell.


Assuntos
Intestinos/citologia , Células-Tronco/citologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Feminino , Citometria de Fluxo , Imunofluorescência , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo
16.
PLoS Pathog ; 15(9): e1008077, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557273

RESUMO

Influenza A virus (IAV) is a seasonal pathogen with the potential to cause devastating pandemics. IAV infects multiple epithelial cell subsets in the respiratory tract, eliciting damage to the lungs. Clearance of IAV is primarily dependent on CD8+ T cells, which must balance control of the infection with immunopathology. Using a virus expressing Cre recombinase to permanently label infected cells in a Cre-inducible reporter mouse, we previously discovered infected club cells that survive both lytic virus replication and CD8+ T cell-mediated clearance. In this study, we demonstrate that ciliated epithelial cells, type I and type II alveolar cells can also become survivor cells. Survivor cells are stable in the lung long-term and demonstrate enhanced proliferation compared to uninfected cells. When we investigated how survivor cells evade CD8+ T cell killing we observed that survivor cells upregulated the inhibitory ligand PD-L1, but survivor cells did not use PD-L1 to evade CD8+ T cell killing. Instead our data suggest that survivor cells are not inherently resistant to CD8+ T cell killing, but instead no longer present IAV antigen and cannot be detected by CD8+ T cells. Finally, we evaluate the failure of CD8+ T cells to kill these previously infected cells. This work demonstrates that additional cell types can survive IAV infection and that these cells robustly proliferate and are stable long term. By sparing previously infected cells, the adaptive immune system may be minimizing pathology associated with IAV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Evasão da Resposta Imune , Influenza Humana/imunologia , Influenza Humana/virologia , Imunidade Adaptativa , Animais , Antígeno B7-H1/imunologia , Proliferação de Células , Sobrevivência Celular/imunologia , Citotoxicidade Imunológica , Humanos , Imunidade Celular , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/patologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/imunologia
17.
Nat Commun ; 9(1): 5238, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531969

RESUMO

The skin immune system must discriminate between innocuous antigens and pathogens. Antigen applied topically using a Viaskin® patch elicits immune tolerance that can suppress colitis and food allergy. Here we show how topical antigen is acquired and presented by dendritic cells in the skin. Topical antigen is acquired by Langerhans cells (LC) and CD11b+ cDC2s but not cDC1s, and both  LCs and CD11b+ cDC2s reaching the lymph node can prime T cells and expand LAP+ Tregs. However, LCs are neither required nor sufficient for T cell priming, and have no role in tolerance induction. Conversely, IRF-4-dependent cDC2s are required for T cell priming. Acquisition of antigen in the dermis, delivery to the draining lymph node, and generation of tolerance are all absent in hairless mice. These results indicate an important function for hair follicle niche and CD11b+ cDC2s in antigen acquisition, and in generation of primary immune tolerance to topical antigens.


Assuntos
Antígenos/imunologia , Células Dendríticas/imunologia , Folículo Piloso/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Células Dendríticas/metabolismo , Derme/citologia , Derme/imunologia , Derme/metabolismo , Folículo Piloso/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/imunologia , Peptídeos/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Precursores de Proteínas/imunologia , Precursores de Proteínas/metabolismo , Pele/imunologia , Pele/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
18.
J Clin Invest ; 128(8): 3413-3424, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985168

RESUMO

T cells play a key role in immune-mediated glomerulonephritis, but how cytotoxic T cells interact with podocytes remains unclear. To address this, we injected EGFP-specific CD8+ T cells from just EGFP death inducing (Jedi) mice into transgenic mice with podocyte-specific expression of EGFP. In healthy mice, Jedi T cells could not access EGFP+ podocytes. Conversely, when we induced nephrotoxic serum nephritis (NTSN) and injected Jedi T cells, EGFP+ podocyte transgenic mice showed enhanced proteinuria and higher blood urea levels. Morphometric analysis showed greater loss of EGFP+ podocytes, which was associated with severe crescentic and necrotizing glomerulonephritis. Notably, only glomeruli with disrupted Bowman's capsule displayed massive CD8+ T cell infiltrates that were in direct contact with EGFP+ podocytes, causing their apoptosis. Thus, under control conditions with intact Bowman's capsule, podocytes are not accessible to CD8+ T cells. However, breaches in Bowman's capsule, as also noted in human crescentic glomerulonephritis, allow access of CD8+ T cells to the glomerular tuft and podocytes, resulting in their destruction. Through these mechanisms, a potentially reversible glomerulonephritis undergoes an augmentation process to a rapidly progressive glomerulonephritis, leading to end-stage kidney disease. Translating these mechanistic insights to human crescentic nephritis should direct future therapeutic interventions at blocking CD8+ T cells, especially in progressive stages of rapidly progressive glomerulonephritis.


Assuntos
Cápsula Glomerular/imunologia , Linfócitos T CD8-Positivos/imunologia , Glomerulonefrite/imunologia , Falência Renal Crônica/imunologia , Podócitos/imunologia , Animais , Cápsula Glomerular/patologia , Linfócitos T CD8-Positivos/patologia , Glomerulonefrite/genética , Glomerulonefrite/patologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Camundongos , Camundongos Transgênicos , Podócitos/patologia
19.
Immunity ; 48(2): 271-285.e5, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466757

RESUMO

Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.


Assuntos
Folículo Piloso/citologia , Evasão da Resposta Imune , Vigilância Imunológica , Células-Tronco/imunologia , Animais , Apresentação de Antígeno , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Músculos/citologia , Receptores Acoplados a Proteínas G/fisiologia , Evasão Tumoral
20.
Mol Metab ; 6(7): 664-680, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28702323

RESUMO

OBJECTIVE: Type 1 diabetes is characterized by autoimmune destruction of ß-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding ß-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for ß-cells with immunomodulatory properties. METHODS: Transgenic NOD mice overexpressing IGF1 specifically in ß-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. RESULTS: In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of ß-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved ß-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. CONCLUSIONS: Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans.


Assuntos
Diabetes Mellitus Tipo 1/genética , Fator de Crescimento Insulin-Like I/genética , Células Secretoras de Insulina/metabolismo , Animais , Células Cultivadas , Dependovirus/genética , Diabetes Mellitus Tipo 1/terapia , Feminino , Terapia Genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA